

NF522 通用非接触通讯芯片 ——用户手册

NF522 通	用非接触通讯芯片	1
1.产品综	送	5
1.1	产品简介	5
1.2	产品特点	5
1.3	封装引脚	6
	1.3.1 NF522 封装引脚	6
	1.3.2 引脚定义	6
2.NF522	寄存器	
	寄存器描述	
	2.1.1 Page 0 命令与状态	
	2.1.1.1 CommandReg 地址 01h	8
	2.1.1.2 InterruptEnReg 地址 02h	
	2.1.1.3 IRqPinConfigReg_地址 03h	
	2.1.1.4 InterruptrqReg_地址 04h	
	2.1.1.5 DivIrqReg 地址 05h	
	2.1.1.6 ErrorReg 地址 06h	10
	2.1.1.7 Status1Reg 地址 07h	
	2.1.1.8 Status2Reg_地址 08h	
	2.1.1.9 FIFODataReg 地址 09h	
	2.1.1.10 FIFOLevelReg_地址 0Ah	12
	2.1.1.11 WaterLevelReg_地址 0Bh	
	2.1.1.12 ControlReg_地址 0Ch	
	2.1.1.13 CollByteBitPosReg_地址 0Eh	13
	2.1.1.14 ExtReg_地址 0Fh	
	2.2.2 Page 1 通讯	. 14
	2.2.2.1 CRCPresetReg_地址 11h	14
	2.2.2.2 TxModeReg_地址 12h	14
	2.2.2.3 RxModeReg_地址 13h	15
	2.2.2.4 TxControlReg_地址 14h	16
	2.2.2.5 SendBitNumReg_地址 15h	17
	2.2.2.6 SendByteNumReg_地址 16h	17
	2.2.2.7 WaitParmReg_地址 17h	17
	2.2.2.8 ReceiveBeginBitPosReg_地址 18h	. 17
	2.2.2.9 ReceiveByteNumLReg_地址 19h	18
	2.2.2.10 ReceiveByteNumHReg_地址 1Ah	. 18
	2.2.2.11 ReceiveStateReg_地址 1Bh	18
	2.2.2.12 UARTBaudReg_地址 1Fh	
	2.2.3 Page 2 配置	
	2.2.3.1 CRCResultMSBReg_地址 21h	
	2.2.3.2 CRCResultLSBReg_地址 22h	
	2.2.3.3 SvlReg_地址 23h	
	2.2.3.4 RxgainReg_地址 26h	
	2.2.3.5 P_CWConductanceReg_地址 28h	
	2.2.3.6 ModConductanceReg_地址 29h	
	2.2.3.7 TModeReg_地址 2Ah	
	2.2.3.8 TPrescalerLoReg_地址 2Bh	. 22

NYFEA

2.2.3.9 TReloadHiReg_地址 2Ch	22
2.2.3.10 TReloadLoReg_地址 2Dh	22
2.2.3.11 TCounterValHiReg 地址 2Eh	23
2.2.3.12 TCounterValLoReg 地址 2Fh	23
2.2.4 Page 3 测试	23
2.2.4.1 TestPinEnReg 地址 33h	
2.2.4.2 TestPinValueReg 地址 34h	
2.2.3.3 ClkDelayiReg 地址 35h	
2.2.3.4 ClkDelaySetReg 地址 36h	
2.2.5 扩展寄存器	
2.2.5.1 LpcdCtrl 地址 0F/01h	
2.2.5.2 LpcdClkCalib 地址 0F/02h	
2.2.5.3 LpcdTxControl 地址 0F/03h	
2.2.5.4 LpcdPCwConductance 地址 0F/04h	
2.2.5.5 LpcdNCwConductance 地址 0F/05h	
2.2.5.6 LpcdAnalogen_地址 0F/06h	
2.2.5.7 LpcdRxgain 地址 0F/07h	
2.2.5.8 LpcdT1Cfg_地址 0F/08h	
2.2.5.9 LpcdT2Cfg 地址 0F/09h	
2.2.5.10 LpcdT3Cfg 地址 0F/0Ah	
2.2.5.11 LpcdAutoWupCfg_地址 0F/0Bh	
2.2.5.12 LpcdThresholdhi 地址 0F/0Ch	
2.2.5.13 LpcdThresholdlo 地址 0F/0Dh	
2.2.5.14 IrqSet 地址 0F/0Eh	
2.2.5.15 IrqStatus 地址 0F/0Fh	
2.2.5.16 VmidBdtime 地址 0F/11h	
2.2.5.17 LpcdFastdete 地址 0F/12h	
2.2.5.17 Epedi astacte_返址 07/12h	
2.2.5.18 Schshivity_运址 01/13h 2.2.5.19 LpcdADCValue 地址 0F/14h	
2.2.5.19 EpcdADC value_返頭 01/14fi	
3. Host 接口	
3.1 Host 接口的配置	
3.2 UART 接口	
3.2.1 UART 传输的波特率配置	
3.2.2 UART 的帧格式	
3.2.3 UART 的帧格式	
3.3 SPI 接口	
3.4 IIC 接口	
3.4.1.7 位地址	
3.4.2 I2C 写数据	
3.4.3 I2C 读数据时序	
3.5 扩展寄存器的访问	
3.5.1 写扩展寄存器数据	
3.5.2 读扩展寄存器数据	
4.低功耗模式	
4.1 Hard power down	37

4.2 Soft power down	38
4.3 Low power card detection	38
4.4 射频关闭模式	38
5.指令集	38
5.1 概述	38
5.2 NF522 指令描述	
6.典型应用电路	39
7.电器参数	40
7.1 极限额定参数	40
7.2 工作条件	40
7.3 工作电气参数	40
8.封装信息	

1.产品综述

1.1 产品简介

NF522 是一款高度集成的工作在 13.56MHz 下的通用非接触通讯芯片,支 持以下三种协议工作模式。

- ③ 支持符合 ISO/IEC14443 TYPEA 协议的读写器模式
- ③ 支持符合 ISO/IEC14443 TYPEB 协议的读写器模式
- ③ 支持符合 ISO15693 协议的的读写器模式

NF522 具有低电压,低功耗,支持多接口,支持多协议等特点。适用于低 功耗,低电压,低成本的非接触式读写器应用。

1.2 产品特点

₫ 读写器

- 支持 ISO/IEC 14443 TypeA 读写器模式
- 支持 ISO/IEC 14443 TypeB 读写器模式
- 支持 ISO/IEC 15693 读写器模式
- 支持 M1 加密模式
- ISO14443 TYPEA 支持通讯速率 106kbps、212kbps、424kbps、848kbps
- ISO14443 TYPEB 支持通讯速率 106kbps、212kbps、424kbps、848kbps
- ISO15693 支持单双副载波模式,单副载波最高速率支持 52.97kbps,双副载波最高速率支持 26.69kbps
- 读写器操作距离可达 100mm(取决于天线设计)

④ 低功耗模式

- Hard powerdown 模式,
- Soft powerdown 模式
- Lpcd power card detection 模式
- 一 内置低功耗环形振荡器外部场 RF 电平检测电路

时钟及外围接口

- 内置振荡电路外接 27.12MHz 晶体
- 采用引脚复用设计,可支持多种 host接口
- SPI接口最高 12Mbp
- I2C 接口支持最高 400Kbps 的快速模式,支持硬件地址可编程模式
- 串行 UART 接口,支持 RS232 帧格式,最高通讯速率 1.2Mbps
- Host 接口独立电源供电
- 射频发射驱动采用独立电源供电
 - 64Byte 收发缓冲 FIFO
 - 可配置 CRC16 数据校验算法
 - 多功能可编程定时器
 - 中断输出模式灵活可配

1.3 封装引脚

1.3.1 NF522 封装引脚

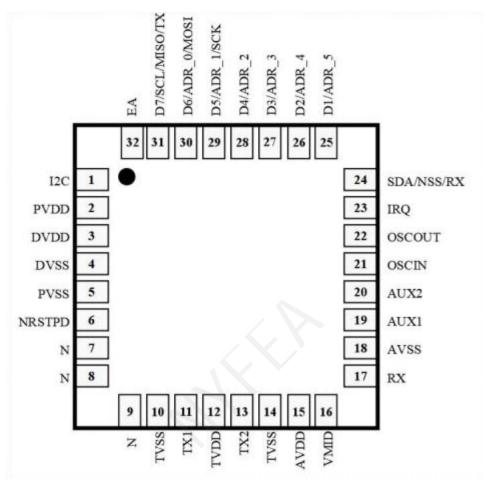


图 1-1 NF522 QFN 封装引脚图

1.3.2 引脚定义

引脚序 号	引脚名称	类型	功能说明
1	I2C	I	通信接口类型控制选择
2	PVDD	P	引脚电源供电
3	DVDD	P	数字电源供电
4	DVSS	G	数字地
5	PVSS	G	引脚电源地
6	NRSTPD	I	复位和下电输入: 断电:关闭时启用;内部电流汇关闭,振荡器被抑制,输入引脚与外部世界断开 复位:上升沿有效
7	-	_	无

0			エ
8	-	-	无
9	-	-	无 // // // // // // // // // // // // //
10	TVSS	G	发送器输出级 1 地
11	TX1	O	发射器 1 调制 13.56 MHz 的能量载波输出
12	TVDD	P	发射器电源供电
13	TX2	O	发射器 2 调制 13.56 MHz 的能量载波输出
14	TVSS	G	发送器输出级 2 地
15	AVDD	P	模拟电源供电
16	VMID	P	内部参考电压
17	RX	I	射频信号输入
18	AVSS	G	模拟地
19	AUX1	О	测试使用
20	AUX2	О	测试使用
			晶体振荡器的反相放大器的输入;同时也是外部
21	OSCIN	I	产生的时钟输入(fclk = 27.12MHz)
			,
22	OSCOUT	О	晶体振荡器的反相放大器的输出
23	IRQ	О	中断请求输出: 指示一个中断事件
	SDA/NSS/RX	I/O	标准双线串行的串行数据输入输出线
24			SPI 信号输入
			UART 数据输入
			测试端口
25	D1/ADR_5	I/O	IIC 总线地址 5
		-1-0	测试端口
26	D2/ADR_4	I/O	IIC 总线地址 4
			测试端口
27	D3/ADR_3	I/O	IIC 总线地址 3
			测试端口
28	D4/ADR_2	I/O	IIC 总线地址 2
			测试端口
29	D5/ADR 1/SCK	I/O	IIC 总线地址 1
		1 0	SPI 串行时钟输入
			测试端口
30	D6/ADR 0/MOSI	I/O	IIC 总线地址 0
		1 0	SPI 主机输出,从机输入
			测试端口
			IIC 总线地址
31	D7/SCL/MISO/TX	I/O	SPI 主机输入,从机输出
			UART数据输出
32	EA	I	通信接口类型控制选择
	LA	1	でロタロ人工工事だけ

1 引脚类型: I=输入, O=输出, I/O=输入/输出, P=电源, G=地

2.NF522 寄存器

2.1 寄存器描述

2.1.1 Page 0 命令与状态

2.1.1.1 CommandReg_地址 01h

启动和停止命令执行。

位	7	6	5	4	3	2	1	0
定义	Aldo_en	Power_en	Command					
位权	r/w	dy	dy	dy	dy	dy	dy	dy
复位值	1	0	0	0	0	0	0	0

位	符号	描述
7	Aldo_en	模拟电源开关
6	Power_en	待机使能
5-0	Command	指令寄存器,根据主控芯片写入的指令码激活一条指令。读该寄存器反馈正在执行的指令。

2.1.1.2 InterruptEnReg_地址 02h

中断请求使能。

位	7	6	5	4	3	2	1	0
定义	IrqInv	TxIEn	RxIEn	IdleIEn	HiAlertIEn	LoAlertIEn	ErrIEn	TimerIEn
位权	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
复位值	1	0	0	0	0	0	0	0

位	符号	描述
7	IRqInv	置 1,引脚 IRQ 的信号被置为寄存器 Status1Reg 的 IRq 位的反。 置 0,引脚 IRQ 的信号与 IRq 位相同。
6	TxIEn	允许发射器中断请求(由 TxIRq 位表示)传递到引脚 IRQ。
5	RxIEn	允许接收器中断请求(由 RxIRq 位表示)传递到引脚 IRQ。
4	IdleIEn	允许 idle 中断请求(由 IdleIRq 位表示)传递到引脚 IRQ。
3	HiAlertIEn	允许渐满中断请求(由 HiAlertIEn 位表示)传递到引脚 IRQ。
2	LoAlertIEn	允许渐空中断请求(由 LoAlertIEn 位表示)传递到引脚 IRQ。
1	ErrIEn	允许错误中断请求(由 ErrIRq 位表示)传递到引脚 IRQ。
0	TimerIEn	允许 timer 中断请求(由 TimerIRq 位表示)传递到引脚 IRQ。

2.1.1.3 IRqPinConfigReg_地址 03h

CRC 中断请求位和引脚 IRQ 的配置。

位	7	6	5	4	3	2	1	0
定义	IRqPushPull	RFU	RFU	RFU	RFU	CRCIEn	RFU	RFU
位权	r/w	_	_	_	-	r/w	-	ı
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7	IRqPushPull	置 1, 引脚 IRQ 按标准 CMOS 输出 pad 工作。 置 0,引脚 IRQ 按开漏输出 pad 工作。
6-3	RFU	预留后用。
2	CRCIEn	允许 CRC 中断请求(由 CRCIRq 位标明)传递到引脚 IRQ
1-0	RFU	预留后用。

2.1.1.4 InterruptrqReg_地址 04h

控制中断请求位。

位	7	6	5	4	3	2	1	0
定义	Set	TxIRq	RxIRq	IdleIRq	HiAlertIRq	LoAlertIRq	ErrIRq	TimerIRq
位权	r/w	dy	dy	dy	dy	dy	dy	dy
复位值	1	0	0	0	0	4	0	0

位	符号	描述
7	Set	置 1,寄存器 InterruptrqReg 中的标志位被置起; 置 0,寄存器 InterruptrqReg 中的标志位被清除。
6	TxIRq	发射数据的最后一位发出后立刻置 1。
5	RxIRq	当接收器检测到一串有效数据流的末尾时置 1。
4	IdleIRq	当一个指令执行完成,或 CommandReg 被改为 Idle 指令时,置 1。
3	HiAlertIRq	当寄存器 Status1Reg 的 HiAlert 位置 1 时置 1。
	THI HEITHING	与 HiAlert 相反,HiAlertIRq 存储该事件并且只能被 Set 清除。
2	LoAlertIRq	当寄存器 Status1Reg 的 LoAlert 位置 1 时置 1。
	LoAleitikq	与 LoAlert 相反,LoAlertIRq 存储该事件并且只能被 Set 清除。
1	ErrIRq	如果在 Error 寄存器有任何 error 位,置 1。
0	TimerIRq	当计时器 TimerValue 减到 0 时,置 1。

注:

- 1、对于 LoAlertIRq 位,只要满足条件,该位就会置 1。
- 2、对于 ErrIRq 位,需先发送新指令(如空闲命令)至 Command 寄存器,用来清除掉 ErrorReg 寄存器,后再将 ErrIRq 置 1 才可清除。

2.1.1.5 DivIrqReg_地址 05h

控制中断请求位。

位	7	6	5	4	3	2	1	0
定义	Set	RFU	RFU	RFU	RFU	CRCIRq	RFU	RFU
位权	r/w	_	_	_	_	dy	_	-
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7	Set	置 1,寄存器 InterruptrqReg 中的标志位被置起; 置 0,寄存器 InterruptrqReg 中的标志位被清除。
6-3	RFU	预留后用。
2	CRCIRq	当 CRC 指令激活且所有数据处理完成后,置 1。
1-0	RFU	预留后用。

2.1.1.6 ErrorReg_地址 06h

显示上一条执行指令的错误状态。

位	7	6	5	4	3	2	1	0			
定义	WrErr	RFU	RFU	BufferOvfl	CollErr	CRCErr	ParityErr	ProtocoErr			
位权	r	-	-	r	r	r	r	r			
复位值	0	0	0	0	0	0	0	0			

位	符号	描述
7	WrErr	当 M1 指令执行过程中数据被主控芯片写入 FIFO 中,或在 RF 接口 发送最后一位和接收最后一位之间数据被主控芯片写入 FIFO,置 1。
6-5	RFU	预留后用。
4	BufferOvfl	如果在 FIFO 已满的情况下,主控芯片或 NF522 的内部状态机(比 如接收器)试图写数据到 FIFO,置 1。
3	CollErr	如果检测到位冲突,置1。在接收器启动阶段自动清除。
2	CRCErr	如果 CRC 校验失败,置 1。
1	ParityErr	如果奇偶校验失败,置1。在接收器启动阶段自动清0。
0	ProtocoErr	在 M1 指令中,如果一个数据流接收到的字节数不正确,ProtocoErr 位置 1。

^{*}注: 执行新指令可以清除所有错误标识。

2.1.1.7 Status1Reg_地址 07h

部分状态位。

111 74 174 1	,							
位	7	6	5	4	3	2	1	0
定义	RFU	CRCErr	RFU	IRq	TRunning	FIFOOvfl	HiAlert	LoAlert

位权	_	r	-	r	r	r	r	r
复位值	0	0	0	1	0	0	0	1

位	符号	描述						
7	RFU	预留后用。						
6	CRCErr 该位表示在执行 CRC 校验指令时,或在 ReceiveReg 寄存器中RxCRCEn位置 1 时,CRC 校验失败,置 1。							
5	RFU	预留后用。						
4	IRq	该位表示,是否由任何中断源请求注意。(与中断使能位相关,参考)						
3	TRunning	如果 NF522 的计时器单元正在运行,置 1。 (TCounterValReg 的值在下一个 Timer 时钟减一)。						
2	FIFOOvfl	该位表示 FIFO 缓冲器内部容量已满。						
1	HiAlert	当储存在 FIFO 里的字节数满足以下公式时,置 1: HiAlert = (64 - FIFOLength) ≤ WaterLevel 例: FIFOLength = 60, WaterLevel = 4 → HiAlert = 1 FIFOLength = 59, WaterLevel = 4 → HiAlert = 0						
0	LoAlert	当储存在 FIFO 里的字节数满足以下公式时,置 1: LoAlert = FIFOLength ≤ WaterLevel 例: FIFOLength = 4, WaterLevel = 4 → LoAlert = 1 FIFOLength = 5, WaterLevel = 4 → LoAlert = 0						

2.1.1.8 Status2Reg_地址 08h

位	7	6	5	4	3	2	1	0
定义	Modem_state			e	M1_Done	M1_Error	RFU	RFU
位权	r r r r		dy	dy	-	-		
复位值	0	0	1	0	0	0	0	0

位	符号	描述
7-4	Modem_State	NF522 内部指令状态当前状态。
3	M1_Done	该位表示 M1 Crypto1 单元开启,所有与卡的数据通讯为密文。 该位只在 M1 卡的读写器模式下有效,只有在成功执行 M1 认证指 令后置 1。该位可由软件清除。
2	M1_Error	该位表示在执行 M1 认证指令时,认证失败,置 1。 该位只在执行 M1 认证指令时有效。
1-0	RFU	预留后用。

2.1.1.9 FIFODataReg_地址 09h

64 字节 FIFO 缓冲器的输入和输出。

位	7	6	5	4	3	2	1	0
定义				FIFC	Data			
位权	dy	dy	dy	dy	dy	dy	dy	dy
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7-0	FIFOData	64 字节 FIFO 缓冲器的数据输入和输出端口。FIFO 缓冲器作为所有串行数据输入输出到并行输入输出的转换器。

2.1.1.10 FIFOLevelReg_地址 0Ah

表示存储在 FIFO 缓冲器里的字节数。

位	7	6	5	4	3	2	1	0
定义	FlushFIFO			FII	FOLeng	gth		
位权	W	r	r	r	r	r	r	r
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7	FlushFIFO	置 1,该位立刻清除内部 FIFO 缓冲器的读写指针和寄存器 ErrReg 里的 BufferOvfl 位。读取该位总是得到 0。
6-0	FIFOLength	显示储存在 FIFO 缓冲器里的字节数。写入数据到 FIFODataReg 寄存器,FIFOLevel 加一,读取 FIFOLevel 减一。

2.1.1.11 WaterLevelReg_地址 0Bh

定义了 FIFO 上溢或下溢警报的电平。

位	7	6	5	4	3	2	1	0
定义	RFU	RFU			Water	Level		
位权	-	_	rw	rw	rw	rw	rw	rw
复位值	0	0	0	0	0	1	0	0

位	符号	描述
7-6	RFU	预留后用。
5-0	WaterLevel	该寄存器定义了一个警报电平以表明 FIFO 缓冲器下溢或上溢。 如果FIFO 缓冲器空间剩下的字节数小于或等于 WaterLevel 定义的字 节数,Status1Reg 中的 HiAlert 位置 1. 如果 FIFO 中的字节数小于等于 WaterLevel 字节数,Status1Reg 中的 LoAlert 位置 1。

2.1.1.12 ControlReg_地址 0Ch

其他控制位。

位	7	6	5	4	3	2	1	0
定义	TStopNow	TStartNow	TPrescalEven	Eof_op	RFU	select_outi	RFU	Select_Shape
位权	dy	dy	r/w	r/w	-	-	-	r/w
复位值	0	0	0	0	0	0	0	1

位	符号	描述
7	TStopNow	置 1, 计时器立刻停止。 读取该位总是得到 0。
6	TStartNow	置 1,立刻启动计时器。 读取该位总是得到 0。
5	TPrescalEven	如果 TPrescalEven 为 0, $f_{Timer} = 13.56 MHz/(2 * TPreScaler + 1);$ 如果 TPrescalEven 为 1, $f_{Timer} = 13.56 MHz/(2 * TPreScaler + 2);$ TprescalEven 初始值为 0。
4	Single_Eof_op	15639 在 16slot 防碰撞时用于只发送 eof
3	RFU	预留后用。
2	Select_Outi	15693 双副载波解码时 1: 选择 outil 作为解码输入 0: 选择 outi2 作为解码输入
1	RFU	预留后用。
0	Select_Shape	选择整形方案 1: 为单 outi2 整形 0: outi1, outi2 联合整形

2.1.1.13 CollByteBitPosReg_地址 0Eh

卡片冲突的发生字节数与位数。

位	7	6	5	4	3	2	1	0		
定义		Coll_Byte_Pos				Coll_Bit_Pos				
位权	r	r	r	r	r	r	r	r		
复位值	0	0	0	0	0	0	0	0		

位	符号	描述
7-4	Coll_Byte_Pos	读写器向主控芯片指示发生冲突的字节数。
3-0	Coll Bit Pos	读写器向主控芯片指示发生冲突的位数。

2.1.1.14 ExtReg_地址 0Fh

扩展寄存器入口。

位	7	6	5	4	3	2	1	0		
定义	EX_	EX_MODE		EX DATA						
位权	dy	dy	dy	dy	dy	dy	dy	dy		
复位值	0	0	0	0	0	0	0	0		

位	符号	描述			
7-6	EX_MODE	扩展寄存器的访问: 01: 写地址模式: bit5~0 写入二级地址 10: 读地址模式: bit5~0 写入二级地址 11: 写数据模式: bit5~0 写入扩展寄存器数据 00: 写地址模式: bit5~0 读出扩展寄存器数据			
5-0	EX DATA	扩展寄存器的地址或数据			

2.2.2 Page 1 通讯

2.2.2.1 CRCPresetReg_地址 11h

定义 CRC 处理器的预设值。

	1111 11 + 12	1 > 4 1						
位	7	6	5	4	3	2	1	0
定义	RFU	RFU	RFU	RFU	RFU	RFU	CRC	Preset
位权	_	_	-	-	_	_	w	w
复位值	0	0	0	0	0	0	1	1

位	符号	描述					
7-2	RFU	预留后用。					
		定义了 CalCRC 指令的	CRC 处理器预设值。				
		值	描述				
1.0	CD CD	00	0000				
1-0	CRCPreset	01	6363				
		10	A671				
		11	FFFF				

2.2.2.2 TxModeReg_地址 12h

定义发射数据的速率和帧格式。

位	7	6	5	4	3	2	1	0
定义	TxCRCEn	S	Send Rate			S	end_Mod	de
位权	r/w	r/w	r/w	r/w	-	r/w	r/w	r/w

复位值	0	0	0	0	0	0	0	0

位	符号		描述					
7	TxCRCEn	置 1,7	生数据发射时使能 CRC 校验生成。					
			定义数据发送速率。					
		值	描述					
		000	106 kbit					
		001	212 kbit					
6-4	Sand Pata	010	424 kbit					
0-4	Send_Rate	011	848 kbit					
		100	26p29					
		101	6p67					
		110	13p24					
		111	52p97					
3	RFU	预留后周	∄ 。					
		定义数据	据发送的帧格式。					
		值	描述					
		000	按 ISO/IEC 14443A 协议接收					
		001	按 ISO/IEC 15963_4s 协议接收					
2-0	Send Mode	010	按 ISO/IEC 15963_4d 协议接收					
2-0	Selia_Mode	011	按 ISO/IEC 14443B 协议接收					
		100	按 ISO/IEC 15963_256s 协议接收					
		101	按 ISO/IEC 15963_256d 协议接收					
		110	预留					
		111	预留					

2.2.2.3 RxModeReg_地址 13h

定义接收数据速率和帧格式。

位	7	6	5	4	3	2	1	0
定义	RxCRCEn	Red	ceive_R	late	RxMultiple	Rec	eive_m	ode
位权	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
复位值	0	0	0	0	1	0	0	0

位	符号		描述					
7	RxCRCEn	置 1, 右	置 1,在数据接收时使能 CRC 校验。					
		定义数据	居传输速率。					
		值	描述					
		000	106 kbit					
6-4	Receive_Rate	001	212 kbit					
		010	424 kbit					
		011	848 kbit					
		100	26p29					

NYFEA

		101	6p67						
		110	13p24						
		111	52p97						
		置 0,接	安收器在接收一个数据帧后停止计时器。						
3	RxMultiple	置 1,持	妾收器允许接收多个数据帧。设置该位后,计时器不会自						
		动停止。							
		定义数据	居接收的帧格式。						
		值	描述						
		000	按 ISO/IEC 14443A 协议接收						
		001	按 ISO/IEC 15963_4s 协议接收						
2.0	D : 1	010	按 ISO/IEC 15963_4d 协议接收						
2-0	Receive_mode	011	按 ISO/IEC 14443B 协议接收						
		100	按 ISO/IEC 15963_256s 协议接收						
		101	按 ISO/IEC 15963_256d 协议接收						
		110	预留						
		111	预留						

2.2.2.4 TxControlReg_地址 14h

位	7	6	5	4	3	2	1	0
定义	RFU	RFU	RFU		T	xContr	ol	
位权	-	-	-	r/w	r/w	r/w	r/w	r/w
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7-5	RFU	预留后用。
4	TxControl	该位置位时,使能 100% ASK 调制; 该位清零时,使能 10% ASK 调制;
3	InvTX2RFOn	如果驱动器 TX2 被使能,则该位置位,TX2 管脚的输出信号反相。
2	Tx2CW	该位置位时,TX2 管脚的输出信号不断传递未调制的 13.56Mhz 的能量载波信号。 该位清零时,Tx2CW 使能调制13.56MHz 的能量载波信号。
1	Tx2RFEn	该位置位时,TX2 管脚的输出信号将 传递经发送数据调制的 13.56Mhz 的 能量载波信号
0	Tx1RFEn	该位置位时,TX1 管脚的输出信号将 传递经发送数据调制的 13.56Mhz 的 能量载波信号

2.2.2.5 SendBitNumReg_地址 15h

发射数据的位数。

位	7	6	5	4	3	2	1	0
定义	RFU	RFU	RFU	RFU	RFU	Sei	nd_Bit_N	um
位权	-	_	_	_	-	r/w	r/w	r/w
复位值	0	0	0	0	0	1	1	1

位	符号	描述
7-3	RFU	预留后用。
2-0	Send_Bit_Num	定义读写器在每个数据帧中发送的位数。

2.2.2.6 SendByteNumReg_地址 16h

发射数据的字节数。

位	7	6	5	4	3	2	1	0
定义		Send_Byte_Num						
位权	w	w	w	w	w	w	w	W
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7-0	Send_Byte_Num	定义读写器在一个数据流中发送的字节数。

2.2.2.7 WaitParmReg_地址 17h

位	7	6	5	4	3	2	1	0
定义	RFU	RFU	RFU	RFU	Wait Parm			
位权	-	_	-	-	r/w	r/w	r/w	r/w
复位值	0	0	0	0	1	0	1	0

位	符号	描述			
7-4	RFU	预留后用。			
3-0	Wait_Parm	接收等待时间			

2.2.2.8 ReceiveBeginBitPosReg_地址 18h

位	7	6	5	4	3	2	1	0
定义	RFU	RFU	RFU	RFU	Re	eceive_Be	gin_Bit_P	os

位权	_	-	_	-	W	W	W	w
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7-4	RFU	预留后用。
3-0	Receive_Begin_Bit_Pos	在出现冲突后,主控芯片指定阅读器从第几位开始把数据读回来。

2.2.2.9 ReceiveByteNumLReg_地址 19h

接收器的一个数据流接收的字节数低 8 位。

位	7	6	5	4	3	2	1	0		
定义		Receive Byte Num								
位权	r	r	r	r	r	r	r	r		
复位值	0	0	0	0	0	0	0	0		

位	符号	描述
7-0	Receive_Byte_Num	读写器向主控芯片指示在上一数据流中接收到的字节数低 8 位。

2.2.2.10 ReceiveByteNumHReg_地址 1Ah

接收器的一个数据流接收的字节数高一位。

位	7	6	5	4	3	2	1	0
定义	RFU	Receive_Byte_Num_H						
位权	_	_	_	_	_	_	-	r
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7-1	RFU	预留后用。
0	Receive_Byte_Num_H	读写器向主控芯片指示在上一数据流中读取到的字节数 高 1 位。

2.2.2.11 ReceiveStateReg_地址 1Bh

接收器的接收结果状态。

位	7	6	5	4	3	2	1	0
定义	RFU	RFU	RFU	RFU	RFU	Receive_Error Receive_Coll		Receive_Done
位权	-	-	-	-	-	r	r	r
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7-3	RFU	预留后用。
2	Receive_Error	读写器向主控芯片指示在接收中发生错误。
1	Receive_Coll	读写器向主控芯片指示在接收中发生冲突。
0	Receive Done	读写器向主控芯片指示接收完成。

2.2.2.12 UARTBaudReg_地址 1Fh

选择串行 UART 接口的速度。

1011 1 11 011111 12.	, H 31 C /2 C								
位	7	6	5	4	3	2	1	0	
定义		BR T0			BR_T1				
位权	r/w	r/w r/w r/w			r/w	r/w	r/w	r/w	
复位值	1	1	1	0	1	0	1	1	

位	符号	描述
7-5	BR_T0	BR_T0 可用于调节 UART 的传输速率,详细 查看 "UART 传输的波特率配置"章节。
4-0	BR_T1	BR_T1 可用于调节 UART 的传输速率,详细查看"UART 传输的波特率配置"章节。

2.2.3 Page 2 配置

2.2.3.1 CRCResultMSBReg_地址 21h

显示了 CRC 计算结果。

位	7	6	5	4	3	2	1	0	
定义		CRCResultMSB							
位权	r	r	r	r	r	r	r	r	
复位值	1	1	1	1	1	1	1	1	

位	符号	描述
7-0	CRCResultMSB	该寄存器显示了CRC 计算结果的高字节数据。它只在 Status1Reg 寄存器中的 CRCReady 位置 1 时有效。

2.2.3.2 CRCResultLSBReg_地址 22h

显示了 CRC 计算结果。

业外 T CRC 计并均不	. 0							
位	7	6	5	4	3	2	1	0
定义	CRCResultLSB							
位权	r	r	r	r	r	r	r	r

复位值	1	1	1	1	1	1	1	1

位	符号	描述
7-0	CRCResultLSB	该寄存器显示了 CRC 计算结果的低字节数据。它只在 Status1Reg 寄存器中的 CRCReady 位置 1 时有效。

2.2.3.3 SvlReg_地址 23h

位	7	6	5	4	3	2	1	0
定义				S	vl			
位权	r/w							
复位值	0	0	0	1	0	0	0	0

位	符号	描述
7-0	Svl	配置参考电压 (模拟信号解码相关)

注:建议配置值为: 0x20,0x40。电源噪声较小的情况下,可配置 0x10或 0x08;

2.2.3.4 RxgainReg_地址 26h

位	7	6	5	4	3	2	1	0
定义	RFU	RFU			Rxgain			RFU
位权	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
复位值	0	0	0	1	1	1	1	0

位	符号	描述
7-6	RFU	预留后用。
5-1	RFU Rxgain	预留后用。 接收增益: 00000:48dB 00001:46dB 0001x:43dB 00100:46dB 00101:44dB 0011x:41dB 01x00:43dB 01x01:41dB
		01x1x:39db 100xx:24dB 101xx:21dB 11xxx:19dB
0	RFU	预留后用。

备注:默认值即可。

2.2.3.5 P_CWConductanceReg_地址 28h

位	7	6	5	4	3	2	1	0
定义	RFU	RFU			P_CWCo	onductance	;	
位权	-	-	r/w	r/w	r/w	r/w	r/w	r/w
复位值	0	0	0	0	0	0	1	0

位	符号	描述
7-6	RFU	预留后用。
5-0	P_CWConductance	PMOS 功率管

注:建议配置值为: 0x09~0x2f(发射功率管组数,一般可观察天线载波幅度大约 20V 左右即可)。

2.2.3.6 ModConductanceReg_地址 29h

位	7	6	5	4	3	2	1	0
定义	RFU	RFU		1	ModCon	ductanc	e	
位权	_	_	r/w	r/w	r/w	r/w	r/w	r/w
复位值	0	0	0	0	0	0	1	0

位	符号	描述
7-6	RFU	预留后用。
5-0	ModConductance	凹槽深度 (越低凹槽越深)

2.2.3.7 TModeReg_地址 2Ah

定义了计时器设置。

/C/ 4 11 11 1) HI (X-11.)							
位	7	6	5	4	3	2	1	0
定义	TAuto	RFU	RFU	TAutoRestart		TPresc	aler_Hi	
位权	r/w	_	_	r/w	r/w	r/w	r/w	r/w
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7	TAuto	置 1,在所有通讯模式、任意通讯速度情况下只要发射结束即自动开始计数。在 106 kbit/s 的 M1 模式和 ISO 14443B 模式下,如果寄存器 RxModeReg 中的 RxMultiple 位为 0,计时器在第 5 位后(1 个起始位,4 个数据位)停止。在 所 有 其 他 模 式 下 , 如 果 寄 存 器 RxModeReg 中 的 RxMultiple 位为 0,计时器在第 4 位停止。
		如果 RxMultiple 位置 1, 计时器永不停止。这种情况下, 计时器可以通过寄存器 ControlReg 的 TStopNow 位置 1来

		停止。 置 0 表示, 计时器不受协议影响。
6-5	RFU	预留后用。
4	TAutoRestart	置 1, 计时器会从 TReloadValue 自动重启 Count-down 计数, 而不是计数减到 0 后停止。 置 0, 计时器减至 0, TimerIRq 位置 1。
3-0	TPrescaler_Hi	定义了 TPrescaler 的高 4 位。 如果 ControlReg 中的 TPrescalEven 为 0, $f_{Timer} = 13.56 MHz/(2*TPreScaler + 1);$ 如果 ControlReg 中的 TPrescalEven 为 1, $f_{Timer} = 13.56 MHz/(2*TPreScaler + 2);$ 其中 TPreScaler = [TPrescaler_Hi:TPrescaler_Lo](共 12 位)

2.2.3.8 TPrescalerLoReg_地址 2Bh

计时器预分频的低 8 位。

位	7	6	5	4	3	2	1	0
定义		TPrescaler Lo						
位权	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
复位值	0	0	0	0	1	0	0	0

位	符号	描述
7-0	TPrescaler_Lo	定义了 TPrescaler 的低 8 位。 f _{Timer} 计算公式见 TModeReg 寄存器的 TPrescaler_Hi 位的描述。

2.2.3.9 TReloadHiReg_地址 2Ch

16 位计时器的重载值。

位	7	6	5	4	3	2	1	0
定义		TReloadVal Hi						
位权	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7-0	TReloadVal_Hi	定义了 TReloadReg 的高 8 位。 每次计时开始,计时器自动加载 TReloadVal。改变该寄存器只在 下次开始计时时影响计时。

2.2.3.10 TReloadLoReg_地址 2Dh

位	7	6	5	4	3	2	1	0
定义				TReload				

位权	r/w							
复位值	0	0	0	0	0	0	0	0

位	符号	描述
7-0	TReloadVal_Lo	定义了 TReloadReg 的低 8 位。 每次计时开始,计时器自动加载 TReloadVal。改变该寄存器只 在下次开始计时时影响计时。

2.2.3.11 TCounterValHiReg_地址 2Eh

计时器的当前值。

位	7	6	5	4	3	2	1	0		
定义		TCounterVal Hi								
位权	r	r	r	r	r	r	r	r		
复位值	0	0	0	0	0	0	0	0		

位	符号	描述
7-0	TCounterVal_Hi	计时器当前值,高8位。

2.2.3.12 TCounterValLoReg_地址 2Fh

计时器的当前值。

位	7	6	5	4	3	2	1	0		
定义		TCounterVal_Lo								
位权	r	r	r	r	r	r	r	r		
复位值	0	0	0	0	0	0	0	0		

位	符号	描述
7-0	TCounterVal_Lo	计时器当前值,低8位。

2.2.4 Page 3 测试

2.2.4.1 TestPinEnReg_地址 33h

测试信号方向配置

044 (III 0) 4 1 4	777-3-11									
位	7	6	5	4	3	2	1	0		
定义	RFU		TestPinEn							
位权	_	r/w	r/w	r/w	r/w	r/w	r/w	-		
复位值	0	1	1	1	1	1	1	0		

7	RFU	预留后用。
6-1	TestPinEn	控制测试 IO 口 D5-D0 的方向 1: 输出 0: 输入
0	RFU	预留后用。

2.2.4.2 TestPinValueReg_地址 34h

测试信号输出电平配置

位	7	6	5	4	3	2	1	0	
定义	UseIO		TestPinValue						
位权	r/w	r/w	r/w	r/w	r/w	r/w	r/w	_	
复位值	0	0	0	0	0	0	0	0	

位	符号	描述
7	UseIO	0: D5-D0 使用为测试信号,输出根据 TestPin_Sel。 1: 按照 TestPinValue 寄存器值输出 D5-D0 的电平。
6-1	TestPinValue	IO 口输出特定的值
0	RFU	预留后用。

2.2.3.3 ClkDelayiReg_地址 35h

位	7	6	5	4	3	2	1	0		
定义	RFU	RFU	ClkDelayi							
位权	-	-	r/w	r/w	r/w	r/w	r/w	r/w		
复位值	0	0	0	1	1	0	0	1		

位	符号	描述
7-6	RFU	预留后用。
5-0	ClkDelayi	当 Hand_set 为 0 时,为自动校准的结果,表示当前延时单元开启组数;
		当 Hand_set 为 1 时,为手动开启延时单元组数;

2.2.3.4 ClkDelaySetReg_地址 36h

位	7	6	5	4	3	2	1	0
定义	Clkdelaydata_flag	Check_full	Hand_set	Flip_angle				
位权	r	r	r/w	r/w	r/w	r/w	r/w	r/w
复位值	0	0	0	0	1	0	0	1

位 符号 描述	
---------------	--

7	Clkdelaydata_flag	延时模块到达指定相 差
6	Check_full	延时单元全开而无反 相
5	Hand_set	1 为手动配置延迟组 数,0 为自动跑到 指定角度
4-0	Flip_angle	Hand_set 为 0 下有效 5'd00-5'd16 可配, 00 为 180°, 梯度为 11.25°, 如 02 为 157.5°

注: 若需修改 4-0 位,则修改后需要往 command 寄存器写入命令 (0x81)并延时。

2.2.5 扩展寄存器

2.2.5.1 LpcdCtrl_地址 0F/01h

位	7	6	5	4	3	2	1	0
定义	ExMode		RFU	RFU	RFU	RFU	calibEn	lpcdEn
位权	r/w		r/w	r/w	r/w	r/w	r/w	r/w
复位值	00		0	0	0	0	0	0

位	符号	描述
1	calibEn	0, 非校准状态。 1, 执行校准。
0	lpcdEn	0,非 LPCD 模式 1,进入 LPCD 模式。

2.2.5.2 LpcdClkCalib_地址 0F/02h

位	7 6		5	4	3	2	1	0
定义	ExMode		RFU	RFU	rc27mCalib	rc32kCalib	rcCalib	lfvcCalib
位权	r/w		r/w	r/w	r/w	r/w	r/w	r/w
复位值	复位值 00		0	0	1	1	0	0

位	符号	描述
3	rc27mCalib	置 1, 执行环振 RC27M 的自动校准

2	rc32kCalib	置 1, 执行环振 RC32K 的自动校准
1	rcCalib	置 1, 执行定时校准
0	lfvcCalib	置 1, 低频定时器执行定时校准

2.2.5.3 LpcdTxControl_地址 0F/03h

位	7	6	5	4	3	2	1	0
定义	ExMode		RFU	LpcdTxControl				
位权	r/w		r/w	r/w	r/w	r/w	r/w	r/w
复位值	复位值 00		0	1	1	0	1	1

位	符号	描述					
4-0	LpcdTxControl	校准和 LPCD 模式的 T3 阶段,载波发射的控制。					

2.2.5.4 LpcdPCwConductance_地址 0F/04h

位	7	6	5	4	3	2	1	0	
定义	ExMode		LpcdCwPConductance						
位权	r/w		r/w	r/w	r/w	r/w	r/w	r/w	
复位值 00		0	0	0	0	1	0		

位	Ĭ	符号	描述
5-	-0	LpcdPCwConductance	校准和 LPCD 模式的 PCW 控制。

2.2.5.5 LpcdNCwConductance_地址 0F/05h

位	7	6	5	4	3	2	1	0
定义	ExMode		RFU	RFU	RFU	LpcdNCwConductance		
位权	r/w		r/w	r/w	r/w	r/w	r/w	r/w

复位值 00	0	0	0	0	0	1
---------------	---	---	---	---	---	---

位	符号	描述
5-0	LpcdNCwConductance	校准和 LPCD 模式的 NCW 控制。

2.2.5.6 LpcdAnalogen_地址 0F/06h

位	7	6	5	4	3	2	1	0
定义	ExMode		RFU	tvddSel	vmidEn	aldoEn	sbias2	opapd
位权	r/w		r/w	r/w	r/w	r/w	r/w	r/w
复位值	00		0	0	0	0	0	0

位	符号	描述
5	RFU	预留后用
4	tvddSel	校准和 LPCD 模式的 T3 阶段的 TVDDsel 控制。
3	vmidEn	校准和 LPCD 模式大的 T2、T3 阶段 VMID 控制。
2	aldoEn	LPCD 模式下,T1 阶段的控制。
1	sbias2	校准和 LPCD 模式的 sbias2 控制。
0	opapd	LPCD 模式下,T1、T2 阶段的控制。

2.2.5.7 LpcdRxgain_地址 0F/07h

位	7	6	5	4	3	2	1	0	
定义	ExM	ExMode		Rxgain					
位权	r/	r/w		r/w	r/w	r/w	r/w	r/w	
复位值	0	00		0	0	0	0	1	

位	符号	描述
4-0	LpcdRxgain	校准和 LPCD 模式的增益

2.2.5.8 LpcdT1Cfg_地址 0F/08h

位	7	6	5	4	3	2	1	0
定义	ExM	1ode	RFU	RFU		T1Tin	neConf	
位权	r/	r/w		r/w	r/w	r/w	r/w	r/w
复位值	0	0	0	0	0	0	1	1

位	符号	描述
3-0	T1TimeConf	T1 的时间片配置: T1_time = (T1TimeConf + 2) * 100ms

2.2.5.9 LpcdT2Cfg_地址 0F/09h

位	7	6	5	4	3	2	1	0
定义	ExM	lode	RFU	T2TimeConf				
位权	r/	W	r/w	r/w	r/w	r/w	r/w	r/w
复位值	00		0	1	0	0	1	0

位	符号	描述
4-0	T2TimeConf	T2 的时间片配置: T2_time = (T2TimeConf + 2) * 10us

2.2.5.10 LpcdT3Cfg_地址 0F/0Ah

位	7	6	5	4	3	2	1	0
定义	ExM	ExMode		RFU	T3TimeConf			
位权	r/	r/w		r/w	r/w	r/w	r/w	r/w
复位值	直 00		0	0	0	0	1	0

位	符号	描述
3-0	T3TimeConf	T3 的时间片配置: T3_time = (T3TimeConf + 2) * 9.4us

2.2.5.11 LpcdAutoWupCfg_地址 0F/0Bh

位	7 6 5 4 3		2	1	0			
定义	ExMode		RFU	RFU RFU AwakeEn		AwakeTime		ne
位权	r/w		r/w	r/w	r/w	r/w	r/w	r/w
复位值	00		0	0	0	0	0	0

位	符号	描述
3	AwakeEn	唤醒使能,设置 1 时,在 lpcd 模式下启动唤醒计时,并且根据 awake_time 计时给出中断标志。
2-0	AwakeTime	自动唤醒的时间片配置。 000: 6 秒 001: 12 秒 010: 15 分钟 011: 30 分钟 100: 1 小时 101: 1.8 小时 111: 7.2 小时

2.2.5.12 LpcdThresholdhi_地址 0F/0Ch

位	7	6	5	4	3	2	1	0		
定义	ExM	ExMode		LpcdThresholdhi						
位权	r/	r/w		r/w	r/w	r/w	r/w	r/w		
复位值	00		0	0	0	0	0	0		

位	符号	描述
4-0	LpcdThresholdhi	检测的上阈值

2.2.5.13 LpcdThresholdlo_地址 0F/0Dh

位	7 6		5	4	4 3 2 1 0					
定义	ExM	ExMode		LpcdThresholdlo						
位权	r/w		r/w	r/w	r/w	r/w	r/w	r/w		

复位值 00	0	0	0	0	0	0	
---------------	---	---	---	---	---	---	--

位	符号	描述
4-0	LpcdThresholdlo	检测的下阈值

2.2.5.14 IrqSet_地址 0F/0Eh

位	7	6	5	4	3	2	1	0
定义	ExMode		RFU	RFU	RFU	LpcdIrqEn	LpcdIrqpushpull	LpcdIrqinv
位权	r		r	r	r	r/w	r	r
复位值	00		0	0	0	0	0	1

位	符号	描述
2	LpcdIrqEn	LpcdIrqEn=1, LPCD 相关中断状态输出到芯片的 IRQ 引脚。
1	LpcdIrqpushpull	中断配置寄存器的 irqpullpush 备份
0	LpcdIrqinv	中断配置寄存器的 irqinv 备份

2.2.5.15 IrqStatus_地址 0F/0Fh

位	7 6		5	4	3	2	1	0
定义	ExMode		RFU	RFU	AwakeIrq	CalibIrq	CalibErrIrq	CardIrq
位权	r		r	r	r/w	r/w	r/w	r/w
复位值	00		0	0	0	0	0	0

位	符号	描述
3	AwakeIrq	1 标志自动唤醒计时结束。
2	CalibIrq	1 标志调校模式完成一次电平检测。
1	CalibErrIrq	1 标志调校模式未完成一次电平检测。
0	CardIrq	1 标志 lpcd 模式检测到外部卡片。

2.2.5.16 VmidBdtime_地址 0F/11h

位	7	6	5	4	3	2	1	0
定义	ExMode		RFU	VmidBdtime				
位权	r		w/r	w/r	w/r	w/r	w/r	w/r
复位值	00		0	0	0	0	0	0

1 1	位	符号	描述
4	0:4	VmidBdtime	vmid 建立时间配置

2.2.5.17 LpcdFastdete_地址 0F/12h

位	7	6	5	4	3	2	1	0
定义	ExMode		RFU	RFU	RFU	delay	Time	Fastdete
位权	1	r	r	r	r	w/r	w/r	w/r
复位值	0	0	0	0	0	1	1	0

位	符号	描述
2:1	1.1 72	检测延迟时间; Fastdete = 1 有效 00:1us
	delayTime	01:2us
		10:3us
		11:4us
0	Fastdete	1: 快速检测 0: 慢速检测

2.2.5.18 Sensitivity_地址 0F/13h

位	7	6	5	4	3	2	1	0
定义	ExMode		RFU	RFU	RFU	RFU	Sensitivity	
位权	r		r	r	r	r	w/r	w/r
复位值	0	0	0	0	0	0	0	0

位	符号	描述
1:0	Sensitivity	检测灵敏度 00: 相隔 1 组 01: 相隔 2 组 10: 相隔 4 组

2.2.5.19 LpcdADCValue_地址 0F/14h

位	7	6	5	4	3	2	1	0
定义	ExMode		RFU	LpcdADCValue				
位权	r		r	r	r	r	r	r
复位值	(0	0	0	0	0	0	0

位	符号	描述			
4-0	LpcdADCValue	侦测返回结果。 如果发生LpcdADCValue <lpcdthresholdhi或者lpcdadcvalue>LpcdThresholdlo,则认为有卡片进入射频场。</lpcdthresholdhi或者lpcdadcvalue>			

2.2.5.20 CLKCONF_地址 0F/16h

位	7	6	5	4	3	2	1	0
定义	ExN	Iode	RFU	RFU	oscEn	rcoscEn	sysclk	lpcdXtal
位权	1	r	r	r	w/r	w/r	w/r	w/r
复位值	()	0	0	1	0	0	0

位	符号	描述
3	oscEn	0,外部晶振关闭 1,外部晶振开启
2	rcoscEn	0, RC27M 关闭 1, RC27M 开启
1	sysclk	0,选用外部晶振作为系统时钟 1,选用内部 RC27M 作为系统时钟
0	lpcdXtal	0, LPCD 模式采用内部 RC27M 时钟 1, LPCD 模式采用外部晶振时钟

3. Host 接口

3.1 Host 接口的配置

NF522 支持 UART、SPI、IIC 接口类型,在上电复位完成之后自动检测连接接口类型。

接口类型通过选择管脚 EA、I2C 的电平配置来识别接口类型,下表显示 EA 和 I2C 配置对应的选择配置:

1	NF522		接口类型		
管脚号	管脚名称	UART	SPI	IIC	
1	I2C	0	0	1	
32	EA	0	1	EA	
31	D7	TX	MISO	SCL	
30	D6	-	MOSI	ADDR_0	
29	D5	-	SCK	ADDR_1	
28	D4	-	-	ADDR_2	
27	D3	-	-	ADDR_3	
26	D2	-/ . \	-	ADDR_4	
25	D1	-	-	ADDR_5	
24	SDA	RX	NSS	SDA	

表 3-1 不同接口类型的连接方法

3.2 UART 接口

NF522 的 UART 接口包括输入管脚 RX 和输出管脚 TX, UART 接口兼容 RS232 串行接口。可以通过寄存器配置不同的波特率,接口设计符合标准的 UART 协议,速率兼容 7200bit/s——1.2Mbit/s。

3.2.1 UART 传输的波特率配置

可以通过配置寄存器 UART_BAUD 的 BR_T0、BR_T1 因子修改波特率,默认速率为 9.6kbit/s。

BR_TN	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit5	Bit 6	Bit 7
BR_T0 因子	1	1	2	4	8	16	32	64
BR_T1 范围	1-32	33-64	33-64	33-64	33-64	33-64	33-64	33-64

表 3-2 BR T0 和 BR T1 设置

i			
	transfer speed(kbit/s)	UART BAUD	Transfer speed accuracy(%)

	Decimal	Hexadecimal	
7.2	250	FA	-0.25
9.6	235	EB	0.32
14.4	218	DA	- 0.25
19.2	203	СВ	0.32
38.4	171	AB	0.32
57.6	154	9A	-0.25
115.2	122	7A	-0.25
128	116	74	-0.06
230.4	90	5A	-0.25
460.8	58	3A	-0.25
921.6	28	1C	1.45
1228.8	21	15	0.32

表 3-3 UART 传输的波特率配置

上表的 UART 波特率根据一下的公式计算:

 $\stackrel{\text{\tiny def}}{=} BR_T T0 = 0$:

$$transfer _speed = \frac{27.12}{BRT1 + 1}$$

当 BR_T0 \neq 0:

transfer_speed =
$$2^{(BRT0-1)} \times (BRT1+33)$$

注: 不支持高于 1228.8kbit/s 的传输速率

3.2.2 UART 的帧格式

位	长度	值
起始位(SA)	1位	0
数据字段	8位	数据
停止位(SO)	1位	1

表 3-4 UART 的帧格式

注: UART 协议通讯 LSB 优先传输,并且不带奇偶校验位。

3.2.3 UART 的地址字节

地址字节:第一字节是地址字节,满足一下格式。

最高位定义通讯方式,中间6位定义通讯地址,最后一位预留。

7 (MSB)	6	5	4	3	2	1	0
1 = 读 0 = 写			地址。	A5-A0			预留后用

3.3 SPI 接口

NF522 的 SPI 接口在通讯作为 Slave 端通讯,设计符合标准的 SPI 协议,最高 速率达到 12M/s,兼容模式 0、3。

3.4 IIC 接口

3.4.17 位地址

在 I2C 总线的传输过程中,起始状态后的第一字节是 Master选择 Slave 的目的地址。如下图所示:

bit6(MSB) bit5 bit4	bit3 bit2	bit1 bit0	R/W(LSB)
---------------------	-----------	-----------	----------

图 3-1 START 后的第一字节

在 I2C 总线的通信过程中,设备地址是通信的第一个字节,用于确定总线主设备与那个从设备节点的通信。

I2C 接口提供设备地址锁定的方式,复位释放之后,根据 EA 引脚的电平,会检测当前的其余接口引脚电平,并将电平锁定到设备地址中。

假设 EA= 0, I2C 的地址高位默认为 0101, d4、d5、d6 引脚电平和 0101 组成 I2C 设备地址。

假设 EA= 1, ADDR_5~ADDR_0 由引脚 d1、d2、d3、d4、d5、d6 决定, ADDR_6 默认是 0。

在以上两种默认中,都会在复位释放之后立即锁定地址信号,后续引脚的变化不会改变 I2C 地址,知道下一次复位释放后,重新锁定。

I2C 地址	ADDR_6	ADDR_5	ADDR_4	ADDR_3	ADDR_2	ADDR_1	ADDR_0
引脚	0	D1	D2	D3	D4	D5	D6

表 3-6 IIC 的硬件地址定义

3.4.2 I2C 写数据

I2C 的数据写入按照一下时序:

- a) 按照 I2C 总线的协议要求,每次的数据传输第一字节给出设备地址。
- b) 第二字节是寄存器地址。
- c) 后面是 N 字节的数据。

图 3-2 I2C 的写数据时序

3.4.3 I2C 读数据时序

I2C 的数据读出按照一下时序:

- a) 首先,先访问寄存器地址,即按照 I2C 总线的协议要求,每次的数据传输的第一字 节给出设备地址,第二字节给出寄存器地址。
- b) 然后重启起始条件,给出设备地址和读信号。
- c) 接收 N 字节的数据。

图 3-3 I2C 的读数据时序

3.5 扩展寄存器的访问

NF522 的扩展寄存器采用 2 级地址访问,所有的 Host接口都可以访问。第 1 级的地址是 0F,第 2 级是 6 位,通过正常的对 0F 寄存器读写操作,按照下表的规制对扩展寄存器读写数据:

7 (MSB)	6	5	4	3	2	1	0
01		写扩展寄存器二级地址					
10 读扩展寄存器二级地址			让				
11		写扩展寄存器数据					
00		读扩展寄存器数据					

表 3-7 扩展寄存器字节定义

3.5.1 写扩展寄存器数据

非扩展寄存器的写数据方式为:

- 1. 写入目标寄存器地址并设定为通讯写。
- 2. 写入目标寄存器数据。

扩展寄存器的写数据包括一下 4 步:

- 1. 写 0F 寄存器并设置为通讯写。
- 2. 写入目标 2 级寄存器地址(01b+6 位 2 级地址)。
- 3. 写 0F 寄存器并设置为通信写。
- 4. 写入目标 2 寄存器数据(11b+6 位数据)。

	Byte0	Byte1	Byte2	Byte3
输入	0F+W	01b+Ex_reg_addr	0F+W	11b+Ex_reg_data
输出				

表 3-8 写数据流程

3.5.2 读扩展寄存器数据

非扩展寄存器的读数据方式为:

- 1. 写入目标寄存器地址并设备为通讯读。
- 2. 接收目标寄存器数据。

扩展寄存器的读数据包括以下 4 步:

- 1. 写 0F 寄存器并设置通讯读。
- 2. 写入目标 2 级寄存器地址(10b+6 为 2 级地址)。
- 3. 写 0F 寄存器并设置为通讯读。
- 4. 接收目标寄存器数据(00b+6 为目标数据)。

	Byte0	Byte1	Byte2	Byte3
输入	0F+W	10b+Ex_reg_addr	0F+R	
输出				00b+Ex_reg_data

表 3-9 读数据流程

4.低功耗模式

NF522 支持 3 种低功耗模式,可适应不同的功耗需求:

- Hard power down 模式
- Soft power down 模式
- Low power card detection 模式

4.1 Hard power down

NF522 的 Hard Power Down模式关闭数字电路的供电、关闭模拟电源、关闭晶 振和内部 RC 振荡器,所以双向 IO 引脚和输入引脚隔离与外部的连接,寄存器和 FIFO 的值丢失。

当 NPD 维持长时间的低电平,芯片进入 HPD 模式。NPD 引脚拉高,维持高电平,芯片退出 HPD 模式,所有电路重新运行并初始化。

4.2 Soft power down

通过设置 Command 寄存器的 PowerDown 位为 1, NF522 芯片进入 Soft Power Down 模式,关闭晶振,输入输出引脚保持原状态不变,所以寄存器、FIFO 缓冲内容和配置保持不变。

通过设置 Command 寄存器的 PowerDown 位为 0, 芯片将会退出 SPD 模式,如果使用外部晶振作为系统时钟,需要等待晶振稳定才可以使用。

4.3 Low power card detection

NF522 的 Low Power Detection Card 提供低功耗检测卡片的功能。进入 LPCD 模式之前需要配置扩展寄存器 LpcdCtrl 的 LpcdEn 为 1, 芯片将进入 LPCD 模式。LPCD 模式下,输入输出引脚保持原状态不变,所以寄存器、FIFO 缓冲内容和配置保持不变。一旦出现检测到卡片或者唤醒定时,芯片将退出 LPCD 模式。

4.4 射频关闭模式

在射频关闭模式下 NF522 会关闭射频发射驱动电路,同时关闭射频场,通过 设置 Txcontrol 寄存器[4:0]位开启和关闭。

5.指令集

5.1 概述

NF522 的操作 由一个可 以执行一系列指令 的状态机 决 定 ,指令通过 向 CommandReg 寄存器写入指令码来执行,指令必须的参数或数据通过 FIFO 缓冲器来交 换。

5.2 NF522 指令描述

指令	指令代码(16 进制)	功能说明
StartUp	3F	运行复位和初始化过程
Idle	00	空指令,用来取消当前命令执行
Transmit	1A	发送 FIFO 缓存数据
Receive	16	启动接收电路
Transceive	1E	发送 FIFO 内缓存数据,发送完后自动激活接收电路

CalcCRC	12	启动 CRC 协处理器
M1_Strat	14	启动 M1 加密通信
M1 Stop	15	取消 M1 加密通信

注: 写入 Command 寄存器时,注意命令需要或上寄存器最高位(cmd | 0x80)。

6.典型应用电路

下面给出基于 NF522 的典型应用图。使用单天线时,其中一路 TX 可不接。 (注:天线阻抗调至 40~50 欧姆。)

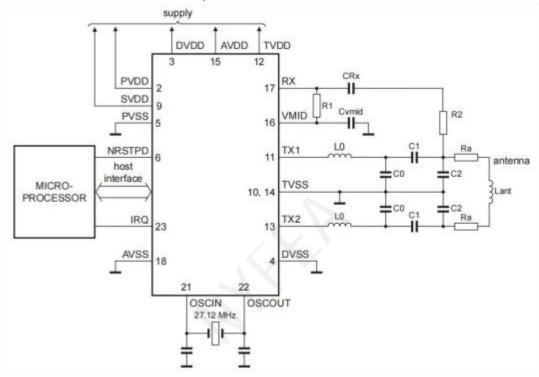


图 6-1 典型应用图

7. 电器参数

7.1 极限额定参数

符号	参数	最小值	最大值	单位
$T_{ m amb.abs}$	存储温度	-40	+85	$^{\circ}$
AVDD	直流供电电压	2.6	5.5	V
ESD(HMB)			8	KV
ESD(CDM)			500	V

表 7-1 NF522 极限额定参数

注: 如果外加条件超过极限额定参数的额定值,将会对芯片造成永久性的破坏。

7.2 工作条件

符号	参数	条件	最小值	典型值	最大值	单位
Tamb	环境温度	-	-25	+25	+85	$^{\circ}$ C
TVDD	发射电源供电	AVSS=PVSS= TVSS=DVSS=0V	2.0	3.3	5.0	V
PVDD	引脚电源供电	AVSS=PVSS= TVSS=DVSS=0V	2.0	3.3	5.0	V
AVDD	模拟电源供电	AVSS=PVSS= TVSS=DVSS=0V	2.3	3.3	5.0	V
DVDD	数字电源供电	AVSS=PVSS= TVSS=DVSS=0V	2.3	3.3	5.0	V

表 7-2 NF522 工作电压条件

7.3 工作电气参数

<i>k</i> ⁄k □	∠> \VI.	by til	± π1./+-	M 1).
符号	参数	条件	典型值	单位
I _{DVDD}	数字电路	上电,发射载波前	4.94	mA
	工作电流	CW=2,发射载波	6.97	mA
		SPD 模式	263	uA
		HPD 模式	0	uA
I _{AVDD}	模拟电路	上电,发射载波前	4.08	mA
	工作电流	CW=2,发射载波	4.11	mA
		SPD 模式	1	nA
		HPD 模式	0	uA
	发射电路	TX1和TX2悬空,TX1EN	3.9(CW=1)	mA
	工作电流	和 TX2EN=1		
		第40 页 (41 页) 4.34(CW=2)	mA

$I_{\scriptscriptstyle TVDD}$		TX1和TX2悬空,TX1EN 和TX2EN=0	0	uA	
ILPCD	LPCD 工 作电流	AVDD= TVDD=3.3V (采用外部时钟)	9.27	uA	

表 7-3 NF522 电气参数

8.封装信息

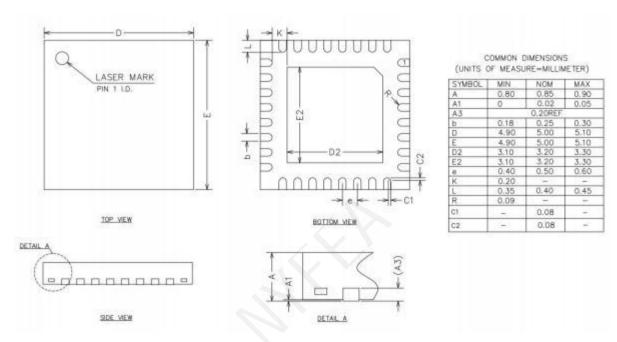


图 8-1 封装信息